Section: Medicine

Original Research Article

PREVALENCE AND FACTORS ASSOCIATED WITH NON-ALCOHOLIC FATTY LIVER DISEASE AMONG HIV INFECTED PATIENTS IN A TERTIARY CARE HOSPITAL

 Received
 : 25/07/2025

 Received in revised form
 : 06/09/2025

 Accepted
 : 29/09/2025

Keywords: NAFLD, NASH, Cirrhosis, metabolic syndrome. HIV.

Corresponding Author: **Dr. Ningthoukhongjam Reema**, Email: thangjamreema@gmail.com

DOI: 10.47009/jamp.2025.7.5.133

Source of Support: Nil, Conflict of Interest: None declared

Int J Acad Med Pharm 2025; 7 (5); 687-694

Thingbaijam Shanti Devi¹, Asfaq Ali², Thangjam Gautam Singh³, Ningthoukhongjam Reema⁴, Ksh. Birendra Singh⁵, Muhammed Hubais NP², Lumsing Gangmei², Shallbetracy Lyngdoh Nongbri²

¹Associate Professor, Department of Medicine, Regional Institute of medical sciences, RIMS, Imphal

²Junior resident, Department of Medicine, RIMS, Imphal

³Associate Professor, Department of Radiodiagnosis, Shija, Academy of Health Sciences, Imphal.

⁴Assistant Professor, Department of Medicine, RIMS, Imphal

⁵Professor, Department of Medicine, RIMS, Imphal

ABSTRACT

Background: Non-alcoholic fatty liver disease (NAFLD) or build up of extra fat in liver cells not related to alcohol, is becoming the most common cause of chronic liver disease (CLD) globally, and it is expected that it will become the primary cause of end-stage liver disease in the not-too-distant future. The development of NAFLD to non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma is of primary health concern. According to certain studies, NASH is a common cause of unexplained impaired liver function in patients chosen for liver biopsy, and NAFLD is commonly seen in HIV-infected patients. Regardless of HIV characteristics, metabolic problems are important risk factors. High body mass index (BMI), waist circumference, type 2 diabetes, hypertension, triglycerides, and a high CD4 cell count were all linked to NAFLD, according to a meta-analysis of risk variables. Hence, we conducted a cross-sectional study in order to ascertain the prevalence of NAFLD in people living with HIV (PLHIV) and evaluate the risk factors for NAFLD in PLHIV. Materials and Methods: The present study was a cross sectional Hospital based study conducted in the Department of Medicine, Regional Institute of Medical Sciences (RIMS), Imphal from March, 2023 to March, 2025. All HIV positive patients above 18 years of age, admitted in Medicine ward, attending Medicine OPD and Centre of Excellence (CoE) ART Centre, RIMS were recruited in the study. Routine blood investigations along with Ultrasonography of whole abdomen, CD4 cell count and viral load determination were done for every patient. SPSS (IBM) version 21 was used for statistical analysis. P-value <0.05 was taken as statistically significant. Result: A total of 133 patients were enrolled with majority males (78.9%, 105) and mean age of 43.76 ± 10.79 years. Maximum patients were under ART with 73.7% (98) with maximum patients in WHO clinical stage I (48, 36.1%). Most of the study subjects were overweight (65, 48.9%) followed by normal (45, 33.8%) and obese (23, 17.3%). Diabetes mellitus (33, 24.8%), dyslipidemia (49, 36.8%) and hypertension (50, 37.6%) were present in the study. Mean CD4 count of the patients was 419.25 ± 171.56 cells/mm3 and the mean viral load was 513.14 ± 884.48 copies/ml. Patients with NAFLD had significantly higher serum AST, triglycerides and random blood sugar normal patients. Majority of the patients who were obese (14, 60.9%) were found to have NAFLD in comparison to those of overweight (26, 40%) and normal BMI (8, 17.8%) patients and the finding was found to be statistically significant. Patients with diabetes (22, 66.7%), dyslipidemia (26, 53.1%) and hypertension (25, 50%) had NAFLD than those without co- morbidities. Conclusion: In the present study, NAFLD was present in 48 out of 133(36.1%)of the HIV patients and majority of the study subjects had diabetes, dyslipidemia, hypertension, increased BMI and thus more commonly affected with NAFLD. Liver ultrasound assessment should be considered for screening NAFLD among PHIV in routine clinical practice. Screening for NAFLD should be implemented as a means of early intervention and to prevent complications.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global public health concern, affecting more than thirty per cent of individuals all over the world. [1,2] In around 20% patients, NAFLD develops into non-alcoholic steatohepatitis (NASH)5 which could later develop into cirrhosis and hepatocellular carcinoma. [3-5]

In India, there are 2.5 million people with as per 2023 report. Prevalence of adult Human immunodeficiency virus (HIV) is 0.2%. [6] The "Golden Triangle," which comprises Myanmar, Thailand, Laos, and the Yunnan Province of China, is known to be the world's most prominent source of illicit heroin and opium. These areas are closer to Manipur, which also has a lengthy international border with Myanmar. [7] The estimated adult HIV prevalence in Manipur among those aged 15 to 49 is 1.43%, higher than the national average. [8]

NAFLD in people living with HIV (PLHIV) was analyzed by Maurice et al. in 2017, with a prevalence of 35%.^[9] Steatosis of the liver, which is the buildup of triglycerides in the hepatocytes, indicates the presence of NAFLD when there is no secondary etiology, such as excessive alcohol intake. Cirrhosis, fibrosis, NAFLD and NASH are all disorders that fall under the umbrella of this condition. In patients who do not have HIV, NAFLD is primarily the hepatic manifestation of the metabolic syndrome. It manifests itself in insulin resistance, central obesity, and dyslipidemia. The disease's progression is influenced by several complex factors that interact with one another, including genetic susceptibility, oxidative stress, and dysbiosis factors. Worldwide, 25% people are affected with NAFLD, increasing with rising rates of obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome.[10]

Patients who are infected with HIV typically have deranged liver function tests (LFTs),[11] of which are frequently attributed to co-infections with viral hepatitis (B and C) or the effects of antiretroviral therapy (ART). Several hepatobiliary illnesses can be caused by HIV infection and include elevated liver enzymes, hepatomegaly, and liver steatosis.^[12] The direct connection between HIV and different cell types of the liver, as well as the influence of HIV glycoproteins on hepatic stellate cells, which stimulate collagen synthesis, are two of the putative processes that are responsible for the damage that HIV causes to the liver. The spectrum of liver illness in people living with HIV/AIDS has shifted to include drug-induced liver disease, simultaneous infections with HCV and HBV hepatitis, NAFLD, and alcohol addiction, due to the widespread deployment of ART.

In HIV infected individuals, the pathogenesis of NAFLD is characterized by two hits: the first "hit" is insulin resistance, which is accompanied by the release of free fatty acids from adipose tissue, which

then followed by hepatic triglyceride accumulation, oxidative stress-cytokineand mediated injury.^[13] During the initial "hit," HIV patients frequently have elevated levels of lipid and glucose abnormalities. These abnormalities might be a consequence of either the HIV infection itself or the antiretroviral drugs they are taking. Nucleoside agents can potentially cause direct hepatotoxicity and steatosis due to their inhibition of mitochondrial DNA polymerase-y. This is in addition to the metabolic side effects that various antiretroviral medications may cause. The overexpression of the sterol regulatory protein, SREBP-1, is another mechanism by which protease inhibitors have the potential to induce steatosis. This group may potentially be affected by NAFLD due to the increased prevalence of diabetes and obesity among HIV-positive individuals. When it comes to the second "hit," HIV patients may be in danger due to the virus, which causes a persistent inflammatory state (such as elevated TNF- α levels), may be the cause of the condition.[14]

There is a dearth of information about NAFLD in the HIV-positive population. Studies have shown that the prevalence of NAFLD, NASH, and fibrosis is both increased and decreased when compared with the general population. Manipur has one of the highest HIV prevalence rates among the six Indian states. Manipur accounts for 8% of HIV-positive infections in India, although making up a very small percentage of the nation's total population.^[8] There is still a knowledge gap on the prevalence of NAFLD in people living with HIV (PLHIV), even though it is a significant problem in the general population. On the other hand, there is evidence that CLD is the second most important cause of mortality among people living with HIV which is not due to HIV.^[15] The present knowledge gaps surrounding the comorbidity burden in people living with HIV were recently addressed by an expert panel review, which identified NAFLD/NASH as a research priority.^[16] This study was undertaken to determine the prevalence of NAFLD among HIVinfected patients attending RIMS Imphal and study the risk factors associated with the condition.

MATERIALS AND METHODS

This was a cross sectional Hospital based study conducted in the Department of Medicine, Regional Institute of Medical Sciences (RIMS), Imphal for a period of two years from March, 2023 to March, 2025. HIV positive patients ≥ 18 years of age admitted in Medicine ward, attending Medicine OPD and Centre of Excellence (CoE) ART Centre, Regional Institute of Medical Sciences, Imphal were enrolled in the study.

Inclusion Criteria

Patients \geq 18 years of age with HIV infection and those willing to give an informed consent were included in the study.

Exclusion Criteria

HIV patients with significant alcohol consumption (determined by Alcohol Use Disorders Identification Test-Consumption questionnaire),^[17] patients with positive viral serology (HBsAg and HCV antibody), Other causes of liver disease (Eg: Autoimmune hepatitis, Wilsons disease),pregnancy or lactation and refusal to participate were excluded from the study.

Sample Size: The sample size for the study was based on a study by Crum-Cianflone N et al,^[18] who reported the prevalence of NAFLD among HIV mono-infected patients to be 31% (67 out of 216 patients) by ultrasound. The sample size was calculated according to the formula:

Sample size, N = 1.962PQ/L2, Taking Prevalence of NAFLD among HIV patients as 31% (Crum-Cianflone N et al(18), Precision (L)= 8%,Alpha = 1.96. Therefore, N = 133.

Based on the formula given above, using the mentioned values, the sample size required is 133.

Study Variables: Socio-demographic characteristics like age, sex, religion, body mass index (BMI), occupation, marital status, HIV status of partner and ART history. WHO clinical staging, diabetes mellitus, hypertension, dyslipidemia and

alcohol consumption were the independent variables. Outcome variables were NAFLD, CD4 cell count and viral load.

Study tools: Weighing machine- Equinox BR-9201 Analog weighing scale. Maximum weight 130 kg (1 division = 500gm) made in India.

- b) Stadiometer Seca portable stadiometer which ranges from 20 to 205 inches. (Calibration 1 mm) made in India.
- · USG whole abdomen
- CD4 count cell analyser
- HIV viral load by Real Time PCR
- ELISA: HIV infection: Diagnosed by Enzyme linked Immunosorbent assay including both HIV-1 and HIV-2 infection

Study procedure: A detailed structured proforma was used. The proforma included detailed clinical history, clinical examination and investigations. Routine blood investigations included complete hemogram with peripheral blood smear, random blood sugar, liver function test, kidnev test, lipid function profile, Ultrasonography of whole abdomen,CD4 cell count and Viral load determination were done for every patient.

• Alcohol use disorders identification test (AUDIT)^[17]

Questions		Scoring system				Your score
	0	1	2	3	4	
How often do you have a drink containing alcohol?	Never	Monthly or less	2 to 4 times per month	2 to 3 times per week	≥4 times per week	
How many units of alcohol do you drink on a typical day when you are drinking?	0 to2	3 to 4	5 to 6	7 to 9	10 or more	
How often have u had 6 or more units if female or 8 or more units if male, on a single occasion in the last year?	Never	Less than monthly	Monthly	Weekly	Daily or almost daily	
How often during the last year have you found that you were not able to stop drinking once you had started?	Never	Less than monthly	Monthly	Weekly	Daily or almost daily	
How often during the last year have you failed to do what was normally expected from you because of your drinking?	Never	Less than monthly	Monthly	Weekly	Daily or almost daily	
How often during the last year have you needed an alcohol drink in the morning to get yourself going after a heavy drinking session?	Never	Less than monthly	Monthly	Weekly	Daily or almost daily	
How often during the last year have you had a feeling of guilt or remorse after drinking?	Never	Less than monthly	Monthly	Weekly	Daily or almost daily	
How often during the last year have you been unable to remember what happened the night before because you had been drinking?	Never	Less than monthly	Monthly	Weekly	Daily or almost daily	
Have you or somebody else been injured as a result of your drinking?	No		Yes, but not in last year		Yes, but during last year	
Has a relative or friend, doctor or other health worker been concerned about your drinking or suggested that you can cut down?	No		Yes, but not in last year		Yes, but during last year	
Total AUDIT score						

• WHO Clinical staging and clinical monitoring of HIV. [19]

Stages	Stage I	Stage II	Stage III	Stage IV
Signs and symptoms	Asymptomatic Persistent generalized lympadenopathy (PGL)	Moderate unexplained weight loss (<10% body weight) , recurrent respiratory tract infections, herpes zoster, angular cheilitis, recurrent oral ulcers, popular pruritic eruptions, seborrhoeic dermatitis, fungal nail infections of fingers	Severe weight loss (>10% body weight) Unexplained chronic diarrhea>1 month Unexplained persistent fever>1 month Oral candidiasis Oral hairy leukoplakia Pulmonary tuberculosis diagnosed in last 2 years, Severe presumed bacterial infections(eg; pneumonia, empyema,pyomyositis, bone or joint infection, meningitis, bactremia) acute necrotizing stomatitis, gingivitis or periodontitis	Conditions where a presumptive diagnosis can be made on the basis of clinical signs or simple investigations HIV wasting syndrome Pneumocystis pneumonia Recurrent severe or radiological bacterial pneumonia Chronic herpes simplex infection (orolabial, genital or anorectal >1 month duration) Esophageal candidiasis Extra pulmonary TB Kaposi's sarcoma Central nervous system toxoplasmosis HIV encephalopathy

Working Definition

- Human immuno-deficiency virus infection: Diagnosed by Enzyme linked Immunosorbent assay including both HIV-1 and HIV-2 infection
- NAFLD was diagnosed by an ultrasound showing steatosis described as diffusion in hepatic echogenicity. The levels of diffusion for hepatic steatosis were classified accordingly in this study as mild, moderate and severe.
- Mild- Hepatic echogenicity is slightly increased with normal visualization of diaphragm and intrahepatic vessel borders.
- Moderate- hepatic echogenicity is moderately elevated with slightly impaired visualization of intrahepatic vessels and diaphragm
- Severe Hepatic echogenicity is significantly increased accompanied by inadequate penetration of posterior section of right liver with little to no visualization of the diaphragm and hepatic arteries.
- Body mass index (BMI): categorized using, The National Institute of Health (NIH) criteria obesity (≥ 30 kg/m2), overweight (25.0–29.9 kg/m2), normal weight (18.5–24.9 kg/m2) and underweight (<18.5 kg/m2).
- Alcoholics(determined by Alcohol Use Disorders Identification Test-Consumption questionnaire), cut-points of ≥8 for men age 65 years or younger, and ≥7 for women of all ages as well as men over age 65 years, are recommended for identifying individuals with medium levels of alcohol-related problems, as an indicator of hazardous and harmful use of alcohol.^[17]

Statistical Analysis: SPSS (IBM) version 21 was used for statistical analysis. Summarizations of data were carried out by using descriptive statistics such as mean, standard deviation and percentages. Independent t test was used to test the association between mean biochemical parameters, mean CD4 count, mean viral load with NAFLD. Chi-square test and Fisher's exact test were employed to test the association between gender, age, comorbidities and BMI with NAFLD. P-value <0.05 was taken as statistically significant.

Approval of research ethics board: Ethical approval for this study was obtained from the Research Ethics Board, Regional Institute of Medical Sciences, Imphal[No.A/206/REBComm(SP)/RIMS/2015/1019/50/2023]. A unique code number was given and no names were taken to maintain confidentiality. All the information collected for the study were utilized only for the purpose and not disclosed to anyone outside the research team.

RESULTS

A cross-sectional study was conducted to determine the prevalence of NAFLD in HIV patients and to study the risk factors for NAFLD in HIV infected patients. The baseline characteristics of the study subjects were given in [Table 1]. The study included 133 patients with majority males (78.9%, 105) while females were 21.1% (28). The mean age of the patients was 43.76 ± 10.79 years and most of them belonged to the age group of 31-40 years (43, 32.3%). Alcohol consumption history was present in most of the patients (54.1%, 72). ART was taken by majority of the study subjects (73.7%, 98). Distribution of patients by liver echogenicity on USG was shown in [Table 2].NAFLD was present in 48 (36.1%) patients. Majority of the patients were in WHO clinical stage I (75, 56.4%) followed by stage II (44, 33.2%) and stage III (14, 10.5%). None of the patients were in stage IV. The highest percentage of participants (65, 48.9%) were overweight, followed by normal (45, 33.8%) and obese (23, 17.3%). The prevalence of NAFLD was higher in patients with higher BMI. Hypertension (50, 37.6%), diabetes mellitus (33, 24.8%) and dyslipidemia (49, 36.8%) patients were present. Mean CD4 count of the patients was 419.25 \pm 171.56 cells/mm3 and the mean viral load was 513.14 ± 884.48 copies/ml, as shown in [Table 3]. Associations between NAFLD and biochemical parameters were given in [Table 4]. Serum AST, triglycerides and random blood sugar was significantly higher and haemoglobinand platelets were lower in patients with NAFLD as compared to patients without NAFLD (P <0.005). There was no significant association between NAFLD with CD4 count and viral load, as given in [Table 5]. Majority of the patients who were obese (60.9%) were found to have NAFLD in comparison to those of overweight (40%) and normal BMI (17.8%) patients and the finding was found to be statistically significant, as shown in [Table 6]. NAFLD was

significantly present in most of the diabetic patients (22, 66.7%), patients with dyslipidemia (26, 53.1%) and hypertension (25, 50%) in comparison to those without co morbidities, which were statistically significant, as given in [Table 7]. Comparable findings were seen among gender and NAFLD. NAFLD has no significant association with age and gender, given in [Table 8].

Table 1: Baseline characteristics of the study subjects (N = 133).

Characteristics	Study subjects (n, %)
Age (in years)	
18-30	12(9%)
31-40	43(32.3%)
41-50	42(31.6%)
51-60	27(20.3%)
>60	9(6.8%)
Gender	
Male	105(78.9%)
Female	28(21.1%)
Marital status	· · · · · · · · · · · · · · · · · · ·
Married	103(77.4%)
Unmarried	30(22.6%)
History of alcohol consumption	
Yes	72(54.1%)
No	61(45.9%)
Drug history	
ART	98(73.7%)
ART naive	35(26.3%)
WHO clinical stage	
Stage I	75(56.4%)
Stage II	44(33.2%)
Stage III	14(10.5%)
Stage IV	0(0%)
BMI (body mass index) (kg/m2)	
Normal ((18.5- 24.9 kg/m2)	45(33.8%)
Overweight (25.0-29.9 kg/m2)	65(48.9%)
Obese $(\ge 30 \text{ kg/m2})$	23(17.3%)
Co morbidities	
Diabetes mellitus	33(24.8%)
Dyslipidemia	49(36.8%)
Hypertension	50(37.6%)
DM,HTN&Dyslipidemia	14(10.5%)
DM & HTN	17(12.8%)
HTN &Dyslipidemia	8(6%)
DM &Dyslipidemia	0(0%)
None	1(0.7%)

^{*}ART- anti retroviral therapy, BMI- body mass index, DM- diabetes mellitus, HTN- Hypertension,

Table 2: Distribution of patients by liver echogenicity on USG (N=133).

Sl.no.	Echogenicity	No. of patients	Percentages (%)
1.	Normal	85	63.9
2.	Mild	26	19.5
3.	Moderate	14	10.5
4.	Severe	8	6.0

Table 3: Mean CD4 count and viral load of patients (N=133)

Sl.no.	Characteristics	Mean	Standard deviation
1.	CD4 count (cells/mm3)	419.25	171.56
2.	Viral load (copies/ml)	513.14	884.48

Table 4: Association between NAFLD and biochemical parameters (N=133)

Sl.no.	Parameters	Mean ± SD	Mean ± SD	
		NAFLD	Normal	
1.	Haemoglobin(gm/dl)	9.80 ± 1.01	10.33 ± 1.02	0.005
2.	Platelets (per microlitre)	1.03 ± 0.37	1.24 ± 0.41	0.004
3.	ALT (IU/L)	70.71 ± 31.67	64.75 ± 27.32	0.257
4.	AST (IU/L)	81.40 ± 28.53	68.94 ± 27.67	0.015
5.	INR	1.41 ± 0.19	1.43 ± 0.18	0.487

WHO – World Health Organisation

6.	PT(seconds)	18.8 ± 2.08	19.1 ± 2.02	0.484
6.	Blood Urea (mg/dl)	38.9 ± 8.16	39.6 ± 8.5	0.661
7.	S.Creatinine (mg/dl)	1.02 ± 0.19	1.05 ± 0.19	0.396
8.	Triglycerides (mg/dl)	264.3 ± 129.04	174.84 ± 63.05	< 0.001
9.	Random blood sugar (mg/dl)	130.0 ± 29.9	116.5 ± 25.6	0.010

^{*}NAFLD- nonalcoholic fatty liver disease AST- Aspartate Aminotransferase, ALT- Alanine Aminotransferase, PT- Prothrombin time, INR-International normalized ratio (PT INR).

Table 5: Association between NAFLD with CD4 count and Viral load (N=133).

Sl.no.	NAFLD	Mean ± SD CD4 count(cells/mm3)	p value
1.	Yes	400.42 ± 164.04	0.343
2.	No	429.89 ± 175.71	
	NAFLD	Viral load -Mean ± SD (copies/ml)	
3	Yes	582.90 ± 955.01	0.496
4	No	473.74 ± 845.35	

Table 6: Association between NAFLD with BMI (N=133).

Sl.no.	BMI	NAFLD	NAFLD	
		Yes	No	
1.	Normal	8 (17.8%)	37 (82.2%)	
2.	Overweight	26 (40.0%)	39 (60.0%)	0.001
3.	Obese	14 (60.9%)	9 (39.1%)	

Table 7: Association between co morbidities and NAFLD (N=133)

Sl.no.	Comorbidities		NAFLD,	NAFLD, n(%)	
			Yes(48)	No (85)	
1.	Diabetes mellitus	Yes(33)	22(66.7%)	11(33.3%)	< 0.001
		No(100)	26(26%)	74(74%)	
2	Dyslipidemia	Yes(49)	26(53.1%)	23(46.9%)	
		No(84)	22(26.2%)	62(73.8%)	0.003
3	Hypertension	Yes(50)	25(50%)	25(50%)	
		No(83)	23(27.7%)	60(72.3%)	0.015

Table 8: Association between NAFLD with Age and Gender (N=133).

Sl.no.	Gender	NAFLD	NAFLD	
		Yes	No	
1.	Male	39(37.1%)	66(62.9%)	0.399
	Female	9(32.1%)	19(67.9%)	
2.	Age	Yes-48(36%)	No-85(64%)	0.533
	18-30	2(4.2%)	10(11.8%)	
	31-40	19(39.6%)	24(28.2%)	
	41-50	15(31.3%)	27(31.8%)	
	51-60	9(18.8%)	18(21.2%)	
	>60	3(6.3%)	6(7.1%)	

DISCUSSION

A total of 133 HIV patients were included with majority males 105(78.9%). Similar preponderance was reported by Maurice JB et al,[9] and Crum-Cianflone N et al,[18] suggesting that male gender is commonly affected by HIV. In this study, the mean age of the patients was 43.76 ± 10.79 years which was comparable to the studies done by Rasoulinejad M et al, [20] (39.9 years) and Riebensahm C et al, [21] (45.7 \pm 11.5 years). Most of participants belonged to the age group of 31-40 years (32.3%) similar to the study conducted by Ram R et al, [22] [31-40 age group (46.7)]In the current study, we found that most patients were married 103(77.4%), and the remaining were unmarried 30(22.6%). Chihota BV et al. [23] also reported half of their HIV study population was married (50%), 38% separated/divorced and 12% unmarried. In this study, most patients were under ART, 98(73.7%), which was much higher than other studies done by Crum-Cianflone N et al.[18] (72%) and Torgersen J et al,[24] (91%). In this study, we found prevalence of NAFLD in HIV patient to be 36.1% (48 out of 133) higher than the studies done by Crum-Cianflone N et al, [18] (31%) and Michel M et al. [25] (26.6%). While a higher prevalence of 68% hepatic steatosis was reported by Debroy P et al. [26] On ultrasound of the whole abdomen in this study, mild liver echogenicity was seen in 19.5% of the patients, moderate in 10.5% and severe in 6%. Crum-Cianflone N et al,[18] reported 18.5% mild steatosis, 8.8% moderate steatosis and 3.7% severe steatosis on ultrasound sonography in their study, which is more or less similar to this study. As per WHO clinical staging, majority study subjects (56.4%) belonged to stage I, followed by stage II (33.2%), stage III (10.5%) and none in stage IV. Ram R et al, [22] reported of the WHO clinical stage I, II, III, IV in 16.6%, 30%, 30% and 23.3% patients respectively. In the present study, mean CD4 count of the patients was 419.25 ± 171.56 cells/mm3 and the mean viral load was 513.14 \pm 884.48 copies/ml. Torgersen J et al,[24] also reported a median CD4 count of 462 (300 to 673) and a median viral load of 48 (40 to 72) copies/ml. This variation in the number of viral loads may be due to the patient's selection, as there were ART naïve patients of 26.3% in this study compared to 9% of Torgersen J et al.^[24] This study found no significant association between mean CD4 count and mean viral load with NAFLD, which was consistent with the study done by Crum-Cianflone N et al.^[18]

The mean Hb (9.80 ± 1.01) and platelet count were significantly less in patients with NAFLD than in those who did not have NAFLD. Serum ALT, serum urea, serum creatinine, PT and INR were more or less equally distributed among the patients with NAFLD and normal patients. There were higher levels of serum AST (81.40 ± 28.53), triglycerides (264.3 ± 129.04) and RBS (130.0 ± 29.9) in patients with NAFLD as compared to patients without NAFLD (AST -68.94 \pm 27.67, TG-174.84 \pm 63.05 and RBS-116.5 \pm 25.6, respectively). Kalligeros M et al,[27] did a meta-analysis of HIV patients and found serum AST and serum cholesterol to be significantly associated with NAFLD. Cervo A et al^[28], also concluded significantly elevated serum ALT and triglycerides in NAFLD patients.

There were significant associations between diabetes mellitus (66.7%), dyslipidemia (53.1%) and hypertension (50%) with NAFLD in this study, which was consistent to the study conducted by. Cianflone N et al,^[18] who reported dyslipidemia and abdominal obesity to be the main culprits for NAFLD development in PLHIV. In the present study, males (37.1%) were more commonly affected with NAFLD when compared with females (32.1%), but the difference was not statistically significant. Similarily, the association of age and NAFLD was not statistically significant.

In this study, the majority of the subjects were overweight with 48.9%, followed by normal BMI (33.8%) and obese (17.3%), which was more or less similar to the findings by Crum-Cianflone N et al (obese - 14.8%, overweight- 42.6% and normal BMI -42.6%).^[18] As per Riebensahm C et al, overweight and obese were present in >50% study population.^[21] Maximum patients who were obese (60.9%) were found to have statistically significant NAFLD in comparison to those of overweight (40%) and normal BMI (17.8%) patients, suggesting that obesity to be significantly associated with NAFLD, which was consistent with the findings by Riebensahm C et al^[21] and Guaraldi G et al.^[29] Cianflone N et al reported in their study that increased waist circumference, an indirect indicator of central adiposity or obesity, is significantly associated with NAFLD, similar to this study's findings.[18]

NAFLD can lead to fibrosis, cirrhosis, and liver failure in the general population. [30,31] NAFLD is rapidly being recognized as the cause of idiopathic cirrhosis in HIV patients. [32] In addition, NAFLD is not only a cause of liver illness but also a predictor of cardiac disease and a lower survival rate [30,33,34].

In this study, 36.1% HIV patients had NAFLD, therefore considering the increased prevalence of NAFLD among HIV patients it is imperative that the impact of NAFLD as a marker for excess morbidity and mortality among HIV patients needs to be studied prospectively.

CONCLUSION

Non-alcoholic fatty liver disease is commonly seen in patients with HIV infection more so among the middle-aged male HIV patients. Haemoglobin, platelet count, serum AST and serum triglyceride and RBS were significantly deranged with NAFLD individuals. There was no significant association between mean CD4 count and mean platelet count with NAFLD. Majority of the diabetic (66.7%), dyslipidemic (53.1%) and hypertensive(50%) patients had NAFLD as compared to normal patients. There was no association between age and NAFLD. Patients with increased BMI were more commonly affected with NAFLD. This study highlights the need for routine screening and early intervention strategies for NAFLD in HIV patients to prevent progression to more severe liver disease. Future research should focus on longitudinal studies to assess the long term impact of NAFLD in this population and potential therapeutic approaches.

REFERENCES

- Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of non-alcoholic fatty liver diseasemeta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.
- Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet GastroenterolHepatol. 2022;7(9):851–61.
- Araujo AR, Rosso N, Bedogni G, Tiribelli C, Bellentani S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. 2018;38(Suppl 1):47–51.
- Kanwal F, Kramer JR, Mapakshi S, Natarajan Y, Chayanupatkul M, Richardson PA, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology. 2018;155(6):1828–37.
- The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet GastroenterolHepatol. 2020;5(3):245–66.
- Ministry of Health and Family Welfare. Available from: https://pib.gov.in/PressNoteDetails.aspx?NoteId=153470
- Singh NK, Nunes W. Drug trafficking and narco terrorism as security threats: A study of India's North East. IndiaQ.2013;69:65 82.
- Ganesh B, Mosoniro K, Vasna J, Elangovan A, Santhakumar A, Shobini R. Factors associated with human immunodeficiency virus infection and self-assessed risk to human immunodeficiency virus among injecting drug users in Manipur, India. Indian J Public Health. 2020;64(5):61-6.
- Maurice JB, Patel A, Scott AJ, Patel K, Thursz M, Lemoine M. Prevalence and risk factors of non-alcoholic fatty liver disease in HIVmono-infection. AIDS. 2017;31(11):1621–32.
- Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention. Circulation. 2009;120(16):1640-5.

- Pol S, Lebray P, Vallet-Pichard A. HIV infection and hepatic enzyme abnormalities: intricacies of the pathogenic mechanisms. Clin Infect Dis. 2004;38:S65–S72.
- Kapogiannis BG, Leister E, Siberry GK, Van Dyke RB, Rudy B, Flynn P, et al. Prevalence of and progression to abnormal non-invasive markers of liver disease (aspartate aminotransferase-to-platelet ratio index and Fibrosis-4) among US HIV-infected youth. AIDS. 2016 Mar 27;30(6):889-98.
- 13. Riddle TM, Kuhel DG, Woollett LA, Fichtenbaum CJ, Hui DY. HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem. 2001;276(40):37514-9.
- Lemoine M, Barbu V, Girard PM, Kim M, Bastard JP, Wendum D, et al. Altered hepatic expression of SREBP-1 and PPARgamma is associated with liver injury in insulinresistant lipodystrophic HIV-infected patients. AIDS. 2006;20(3):387-95.
- SmithCJ, RyomL, WeberR, Morlat P, Pradier C, Reiss P, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): amulticohort collaboration. Lancet. 2014;384(9939):241–8.
- Lake JE, Overton T, Naggie S, Sulkowski M, Loomba R, KleinerDE, et al. Expert panel review on nonalcoholic fatty liver disease in persons with human immunodeficiency virus. ClinGastroenterolHepatol. 2022;20(2):256–68.
- 17. Duffy FF, Sudom K, Jones M, Fear NT, Greenberg N, Adler AB, et al. Calibrating the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) for detecting alcohol-related problems among Canadian, UK and US soldiers: cross-sectional pre-deployment and post-deployment survey results. BMJ open [Internet]. 2023 [cited 2025 Jan 25];13(5):[about p 10.]. Available at: https://pubmed.ncbi.nlm.nih.gov/37130676/.
- Crum-Cianflone N, Dilay A, Collins G, Asher D, Campin R, Medina S, et al. Non-alcoholic fatty liver disease among HIV-infected persons. J Acquir Immune DeficSyndr. 2009;50(5):464-73.
- Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. 2nd edition. Geneva: World Health Organization; 2016. ANNEX 10, WHO clinical staging of HIV disease in adults, adolescents and children. Available from: https://www.ncbi.nlm.nih.gov/books/NBK374293
- 20. Rasoulinejad M, SeyedAlinaghi SA, Sohrabi MR, Badie BM, Manshadi SA, Nezhad MH, et al. Prevalence and factors associated with hepatic steatosis and fibrosis using fibroscan in HIV-positive patients treated with anti-retroviral (ARV) medicines referred to the biggest hospital in Tehran, 2018 to 2019. The Open AIDS Journal. 2020 Dec 16;14(1):108-13.
- Riebensahm C, Berzigotti A, Surial B, Günthard HF, Tarr PE, Furrer H, et al. Factors Associated With Liver Steatosis in People With Human Immunodeficiency Virus on Contemporary Antiretroviral Therapy. Open Forum Infect Dis [Internet]. 2022 [cited 2025 Jan 25];9(11):[about p 9.]. Available at: https://pubmed.ncbi.nlm.nih.gov/36381613/.
- Ram R, Subramanian A, K R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in People Living With HIV Attending Centre of Excellence in HIV

- Care at a Tertiary Level Teaching Hospital in North India-A Pilot Study. J IntAssocProvid AIDS Care. 2025;24:[]. Available at: https://pubmed.ncbi.nlm.nih.gov/39801172/.
- 23. Chihota BV, Riebensahm C, Muula G, Sinkala E, Chilengi R, Mulenga L, et al. Liver steatosis and metabolic dysfunction-associated fatty liver disease among HIV-positive and negative adults in urban Zambia. BMJ Open Gastroenterol [Internet]. 2022 [cited 2025 Jan 25];9(1):[about p 9.]. Available at: https://pubmed.ncbi.nlm.nih.gov/35831020/.
- 24. Torgersen J, So-Armah K, Freiberg MS, Goetz MB, Budoff MJ, Lim JK, et al. Comparison of the prevalence, severity, and risk factors for hepatic steatosis in HIV-infected and uninfected people. BMC Gastroenterol [Internet]. 2019 [cited 2025 Jan 25];19(1):[about p 8.]. Available at: https://pubmed.ncbi.nlm.nih.gov/30987601/.
- Michel M, Labenz C, Wahl A, Anders M, Armandi A, Huber Y, et al. Prevalence and risk factors of non-alcoholic steatohepatitis with significant fibrosis in people with HIV. AIDS. 2022;36(12):1665-74.
- Debroy P, Nagraj S, Chamorro-Pareja N, Castro N, de Leon A, Guerson-Gil A, et al. Assessment of the Association of HIV Infection with Hepatic Steatosis or Fibrosis: a Crosssectional Case—Control Study. SN Comprehensive Clin Med. 2021;3:2504-10.
- 27. Kalligeros M, Vassilopoulos A, Shehadeh F, Vassilopoulos S, Lazaridou I, Mylonakis E, et al. Prevalence and Characteristics of Non-alcoholic Fatty Liver Disease and Fibrosis in People Living With HIV Mono-infection: A Systematic Review and Meta-analysis. ClinGastroenterolHepatol. 2023;21(7):1708-22.
- Cervo A, Milic J, Mazzola G, Schepis F, Petta S, Krahn T, Lebouche B, Deschenes M, Cascio A, Guaraldi G, Sebastiani G. Prevalence, Predictors, and Severity of Lean Nonalcoholic Fatty Liver Disease in Patients Living With Human Immunodeficiency Virus. Clin Infect Dis. 2020;71(10):694-701.
- Guaraldi G, Squillace N, Stentarelli C, Orlando G, D'Amico R, Ligabue G, et al. Non-alcoholic fatty liver disease in HIVinfected patients referred to a metabolic clinic: prevalence, characteristics, and predictors. Clin Infect Dis. 2008;47(2):250-7.
- Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The naturalhistory of non-alcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113-21.
- Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:99-112.
- 32. Loulergue P, Callard P, Bonnard P, Pialoux G. Hepatic steatosis as an emerging cause of cirrhosis in HIV-infected patients. J Acquir Immune DeficSyndr [Internet]. 2007 [cited 2025 Jan 25];45(3):[about p 4.]. Available at: https://pubmed.ncbi.nlm.nih.gov/17592341/.
- Arslan U, Türkoğlu S, Balcioğlu S, Tavil Y, Karakan T, Cengel A. Association between non-alcoholic fatty liver disease and coronary artery disease. Coron Artery Dis 2007:18:433-6.
- Ekstedt M, Franzén LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al. Long term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology2006;44:865-73.